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Abstract
We propose a highly efficient hierarchical representation for point sampled geometry that automatically balances
sampling density and point coordinate quantization. The representation is very compact with a memory consump-
tion of far less than 2 bits per point position which does not depend on the quantization precision. We present
an efficient rendering algorithm that exploits the hierarchical structure of the representation to perform fast 3D
transformations and shading. The algorithm is extended to surface splatting which yields high quality anti-aliased
and water tight surface renderings. Our pure software implementation renders up to 14 million Phong shaded and
textured samples per second and about 4 million anti-aliased surface splats on a commodity PC. This is more than
a factor 10 times faster than previous algorithms.

1. Introduction

Various different types of freeform geometry representations
are used in computer graphics applications today. Besides
the classical volume based representations (distance fields,
CSG) and manifold based representations (splines, polygon
meshes) there is an increasing interest in point based repre-
sentations (PBR) which define a geometric shape merely by
a sufficiently dense cloud of sample points on its surface.
The attractiveness of PBR emerges from their conceptual
simplicity which avoids the handling of topological special
cases that often cause mathematical difficulties in the man-
ifold setting 15. As a consequence, the investigation of PBR
primarily aims at the efficient and flexible handling of highly
detailed 3D models like the ones generated by high resolu-
tion 3D scanning devices.

One apparent drawback of PBR compared to polygonal
representations seems to be that we can sketch a simple 3D
shape by using rather few polygonal faces while the com-
plexity of a PBR is independent from the shape simplicity.
However, for high quality rendering of realistic objects such
coarse mesh approximations are no longer suitable. This is
why modern graphics architectures enable per-pixel shading
operations which go far beyond basic texturing techniques
since different shading attributes and material properties can
be assigned to every pixel within a triangle. PBR, in fact, do
the same but in object space rather than in image space.

Comparing polygon meshes with PBR is analoguous to
comparing vector graphics with pixel graphics. There are

good arguments for both but PBR might eventually become
more efficient since their simple processing could lead to
faster hardware implementations.

Recently developed point based rendering techniques
have been focussing mostly on three major issues which are
critical for using PBR in real world applications: memory
efficiency, rendering performance and rendering quality.

Memory efficiency At the first glance, PBR seem to be
memory efficient since we only have to store pure geomet-
ric information (sample point positions) and no additional
structural information such as connectivity or topology. At a
second glance, however, it turns out that this is not always
true because the number of samples we need to represent
a given shape can be much higher than, e.g., for polygon
meshes. Moreover geometric coherence in an unstructured
point cloud is more difficult to exploit for compression. Nev-
ertheless PBR like 20 which use a hierarchical quantization
heuristic, are able to reduce the memory requirements to
about 3 bytes per input sample position (plus maybe addi-
tional point attributes such as normals or colors).

Rendering performance This is probably the major mo-
tivation for using PBR. When a highly detailed geometric
model is rendered, it often occurs that the projected size of
individual triangles is smaller than a pixel. In this case it
is much more efficient to render individual points since less
data has to be sent down the graphics pipeline. However, one
drawback of existing point rendering systems is that most
of the computations have to be done in software since the
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available graphics hardware is usually optimized for poly-
gon rendering. Still, current software implementations are
able to render up to 500K points per second on a PC platform
1, 8, 18, 29, 25 and up to 2 million points on a high-end graphics
workstation like the Onyx2 20. Moreover, some point based
rendering algorithms are simple enough to be eligible for
hardware implementation in the future.

Rendering quality Point rendering is mostly a sampling
problem. As a consequence it is critical to be able to ef-
fectively remove visual artifacts such as undersampling and
alias. In general, this problem is addressed by splatting tech-
niques 20, 29 which can be tuned to guarantee that no visual
gaps between samples appear and that proper texture filter-
ing is applied to avoid alias effects. Although the surface
splatting problem has been investigated thoroughly 29 there
still seems to be room for optimizing the rendering perfor-
mance.

In this paper we propose a new representation for point
sampled geometry which is based on an octree representa-
tion of the characteristic function χS for the underlying con-
tinuous surface S. By analyzing the approximation proper-
ties of piecewise constant functions we show that this rep-
resentation is optimal with respect to the balance between
quantization error and sampling density. Our new represen-
tation is highly memory efficient since it only requires less
than 2 bit per sample point position (normal and color infor-
mation is stored independently). Moreover, its hierarchical
structure enables efficient processing: Our current pure soft-
ware implementation renders up to 14 million Phong shaded
and textured points per second on a commodity PC which is
coming into the range of the (effective, not peak) polygon
performance of current graphics hardware. The rendering
algorithm can easily be extended to surface splatting tech-
niques for high quality anti-aliased image generation. Even
with these sophisticated per sample computations we still
achieve a rate of about 4 million splats per second.

2. Hierarchical PBR

Before describing our new hierarchical representation, we
have to clarify the general mathematical and geometric na-
ture of PBR. Let a surface S be locally parameterized by a
function f : Ω ⊂ R2 → R3. We obtain a set of sample points
pi on S by evaluating f at a set of uniformly distributed pa-
rameter points (ui,vi) ∈ Ω. If we define a partioning Ωi of Ω
such that Ω = ∪i Ωi with Ωi ∩Ω j = /0 and each Ωi contains
exactly one of the parameter points (ui,vi) then the function
gh : Ω ⊂ R2 → R3 with gh(u,v) ≡ pi for all (u,v) ∈ Ωi is a
piecewise constant approximation of f. Here, the index h of
gh denotes the average radius of the Ωi which is of the same
order as the average distance between the samples pi if f sat-
isfies some mild continuity conditions (Lipschitz-continuity)
19, 16. From approximation theory we know that the approx-
imation error ε = ‖f− gh‖ decreases like O(h) if the point
density increases (h → 0) and this behavior does not depend
on the particular choice of the parameterization f 2.

From this observation it follows that for piecewise con-
stant approximations the discretization step width h and the
approximation error ε are of the same order. Hence we min-
imize the redundancy in a PBR if sample point quantiza-
tion and sample step width are about the same magnitude. In
other words: it does not make any sense to sample the sur-
face S more densely than the resolution of the coordinate val-
ues nor do we gain anything by storing the individual sam-
ple positions with a much higher precision than the average
distance between samples. Fig. 1 demonstrates this effect in
a 2-dimensional example. Notice that the situation is very
different for polygon meshes (piecewise linear approxima-
tions) where a higher precision for the vertex coordinates is
required due to the superior approximation quality of piece-
wise linear surfaces.

Intuitively the relation between sampling density and dis-
cretization precision can be understood by looking at the
pixel rasterization of curves: while the discretization preci-
sion is given by the size of the pixels, the optimal sampling
density has to be chosen such that each intersected pixel gets
at least one sample point but also not more than one sample.

Figure 1: PBR of a circle with different quantization levels
(left: 5 bit, right 10 bit) and different sampling densities (top:
2π/32, bottom: 2π/1024). In the top row the approximation
error between the continuous circle and the discrete point
sets is dominated by the distance between samples while in
the bottom row the error is dominated by the quantization.
Top left and bottom right are good samples since quantiza-
tion error and sampling density are of the same order thus
minimizing redundancy. On the top right we spend too many
bits per coordinate while in the bottom left we store too many
sample points.

A straightforward mathematical model for the propor-
tional sampling density and quantization level is uniform
clustering. We start by embedding the given continuous sur-
face S into a 3-dimensional bounding box or, more precisely,
a bounding cube since the quantization should be isotropic.
Setting n = 1

h we uniformly split this bounding cube into
n× n× n sub-cubes (voxels), and place a sample point pi
at the center of each voxel that intersects the surface S. The
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resulting set of samples has the property that the sampling
density varies between h and

√
3h (distance between voxel

centers) and the approximation error is bounded by
√

3/4h
(maximum distance between voxel centers and S). Hence
both are of the same order O(h) as h is decreased.

An alternative representation for the samples emerging
from uniform clustering is a binary voxel grid G0. Instead
of explicitly computing the center positions of the voxels
we simply store a binary value for every voxel indicating
whether the surface passes through it or not. We call these
voxels full or empty respectively. The voxel grid is a dis-
cretization of the characteristic function χS : R3 → {0,1}
which is one for points (x,y,z) ∈ S and zero otherwise 12.

A naive approach to store this discretized characteristic
function requires n3 bits. To make this representation use-
ful in practice we have to find a more compact formulation
which avoids storing the huge number of zeros (empty vox-
els) in the binary voxel grid. Notice that if we increase the
resolution n (decrease h) then the total number of voxels
increases like O(n3) while the number of voxels intersect-
ing S (full voxels) only increases like O(n2) since S is a 2-
dimensional manifold embedded in R3. Hence for large n
there will be many more zeros than ones in the voxel grid.

In 17 a voxel compression scheme is proposed which ex-
ploits this observation by efficiently encoding univariate se-
quences of voxels in each 2D slice of the voxel grid. Al-
though this compression algorithm is very effective, it is also
quite complicated since it uses several parallel streams of
symbols with different encoding schemes. For our applica-
tion we cannot use this scheme since it does not provide a
hierarchical representation and no guaranteed upper bound
on the memory requirements. The encoding techniques in 5

and 28 generate a hierarchical structure but they store a given
set of 3D points (e.g. the vertices of a polygon mesh) without
adjusting the coordinate precision to the sampling density.

Let us assume n = 2k then we can coarsify the initial
n× n× n voxel grid G0 by combining blocks of 2× 2× 2
voxels. In the resulting coarser voxel grid G1 we store
ones where at least one the G0-voxels in the corresponding
2×2×2 block is full. G1 turns out to be another discretiza-
tion of the characteristic function χS with doubled discretiza-
tion step width h′ = 2h. The coarsification is repeated k times
generating a sequence of voxel grids G0, . . . ,Gk until we end
up with a single voxel Gk. This sequence of grids can be con-
sidered as an octree representation of the characteristic func-
tion χS where the cell Ci+1[ j,k, l] from level Gi+1 is the par-
ent of its octants Ci[2 j,2k,2l], . . . ,Ci[2 j + 1,2k + 1,2l + 1]
from the next finer level Gi.

The information that is lost when switching from the grid
Gi to Gi+1 can be captured by storing a byte code for every
2× 2× 2 block of Gi with the 8 bits indicating the status
of the respective octants. Obviously the zero byte codes for
empty blocks in Gi are redundant since the zero entries in
the coarser grid Gi+1 already imply that the corresponding
block in Gi is empty. Hence the grid Gi can be completely

recovered from Gi+1 plus the non-zero byte codes for the
non-empty 2×2×2 blocks.

By applying this encoding scheme to the whole hierarchy
of grids Gi we end up with a single root voxel Gk (which
is always full) and a sequence of byte codes which enable
the iterative reconstruction of the finer levels Gk−1, . . . ,G0.
This hierarchical representation is very efficient since a sin-
gle zero bit in an intermediate grid Gi encodes a 2i ×2i ×2i

block of empty voxels on the finest level G0. Notice that
this hierarchical encoding scheme is very similar to zero-tree
coding which is a standard technique in image compression
22. Fig. 2 and 3 show an example for this representation in
the 2-dimensional setting. In Section 3 we show that the av-
erage memory requirement for this hierarchical representa-
tion is less than 2 bits per sample point — independent from
the quantization resolution h. The same octree coding tech-
nique has been used independently by 24 in the context of
iso-surface compression. However, they do not analyse the
expected memory requirements.
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Figure 2: The necessary information to recover Gi from
Gi+1 in the 2-dimensional setting can be encoded compactly
by 4-bit codes.
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Figure 3: The 8× 8 pixel grid is hierarchically encoded by
a sequence of 4-bit codes. Notice that the zero-codes ”*” do
not have to be stored explicitly since they implicitly follow
from the zero-bits on the next coarser level. In this example
we use ten 4-bit codes for the 64-bit pixel grid. In the 3-
dimensional case and for higher resolutions the compression
factor is much higher.

The algorithm for the reconstruction of the grid G0 from
the sequence of byte codes simply traverses the octree rep-
resentation of χS. Here, the sequence of byte codes serve as
a sequence of instruction codes that control the traversal. A
one-bit indicates that the corresponding sub-tree has to be
traversed while a zero-bit indicates that the corresponding
sub-tree has to be pruned. In Fig. 4 we show the generic
pseudo-code for a depth-first encoding and decoding algo-
rithm. In Section 4 we explain and analyze this procedure as
well as a breadth-first version in more detail.
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encode(surface S, bounding box B, recursion level i)

if i = 0
return

else
split B into octants B1, . . . ,B8

write byte code [χ1 · · ·χ8] where χi = (S∩Bi 6= /0)
for j = 1, . . . ,8

if (χ j) encode(S, B j , i−1)

decode(bounding box B, recursion level i)

if i = 0
write center position of B

else
split B into octants B1, . . . ,B8

read byte code [χ1 · · ·χ8]
for j = 1, . . . ,8

if (χ j) decode(B j , i−1)

Figure 4: Example code for the hierarchical encoding and
decoding.

3. Memory requirements

Let m = O(n2) = O(h−2) be the number of sample points
that we find on the finest level, i.e., the number of full voxels
in the grid G0. If we switch to the next coarser grid G1, the
number of full voxels is reduced by a factor of approximately
four since the grids Gi discretize the characteristic function
of a 2-manifold. In our hierarchical PBR we only have to
store the non-zero byte codes which implies that G0 can be
reconstructed from G1 plus a set of 1

4 m byte codes. By con-
tinuing the coarsification we generate coarser and coarser
grids G2, . . . ,Gk. The total number of non-zero byte codes
we generate during this procedure is

k

∑
i=1

4−i m ≤ 1
3

m.

Hence we need less than 1
3 m bytes to encode the positions of

m sample points which amounts to 2.67 bit per sample. No-
tice that this result is independent from the number of hierar-
chy levels k =−log2(h), i.e., independent from the sampling
density h or, equivalently, the quantization precision ε.

We can explain this effect by considering the octree struc-
ture of our PBR and by looking at how the final sample po-
sitions are incrementally reconstructed during octree traver-
sal. Every leaf node on the finest level G0 of the octree is
connected to the root node Gk by a unique path of full vox-
els. Every step on this path defines one bit in the coordi-
nate representation of the voxel/sample with the most sig-
nificant bits corresponding to the coarsest levels (cf. Fig. 5).
If two voxels (or samples) have a common ancestor on the
ith level Gi then their paths have a common prefix of length
k− i and hence their coordinate values agree on the first k− i
bits. The memory efficiency of our hierarchical representa-
tion emerges from the fact that these common prefixes are

encoded only once and they are reused for all samples be-
longing to the same sub-tree. For example, one bit of the
coarsest level byte code (that is used to reconstruct Gk−1
from Gk) encodes the leading bit of all three coordinates of
all the samples in the corresponding octant. Notice that the
analysis in 5 exploited a similar prefix property of the point
coordinates in their hierarchical space partition.

(0 / 0)

G0

G1

G2

G3

(0.75 / 0.25)

(0.875 / 0.375)

(0.5 / 0)

0  1  1  0

0  1  1  0

0  1  1  0

1  0  0  1

1  0  0  11  0  0  1

1  0  0  1

1  0  0  11  0  0  1

0  1  1  1

Figure 5: Hierarchical structure of the 2-dimensional exam-
ple from Fig. 3. Since only full voxels have children, we do
not need explicit zero-codes to prune the tree. Notice how ev-
ery step in the path from the root to a leaf node adds another
precision bit to the pixels’ coordinates.

In practice we can even further compress the representa-
tion. Since the expected branching factor in the octree is four,
the byte codes with four one-bits and four zero-bits occur
more frequently than the other codes. We can exploit this un-
balanced distribution of symbols by piping the byte code se-
quence through an entropy encoder 23, 4. For all the datasets
that we tested (cf. Sec. 6), we obtained a compressed repre-
sentation of less than 2 bits per sample point (cf. Table 1).
For a quantization precision of 10 bits per coordinate this
yields a compression factor of 15, if we quantize to 15 bits
the compression factor goes up to 22.5. Notice that this com-
pression rate holds for the pure geometry information only.
Additional attributes like normal vectors and colors have to
be stored separately.

4. Efficient rendering

In the last section we saw that our hierarchical PBR is very
memory efficient since the most significant bits for the sam-
ple coordinates are reused by many samples. In this section
we show that the same synergy effect applies to the 3D trans-
formation of the samples during rendering.

If we apply a projective 3D transform to the set of sam-
ples we normally expect computation costs of 14 additions,
16 multiplications, and 3 divisions per point because these
operations are necessary to multiply a 3D-point in homoge-
neous coordinates with a 4×4 matrix and to de-homogenize
the result to eventually obtain the 2D position with depth in
screen space. We can simplify the calculation by not comput-
ing the depth value, i.e., by applying a 3× 4 matrix, and by
assuming that the homogeneous coordinate of the 3D point is
always one. Under these conditions, the computational costs
reduce to 9 additions, 9 multiplications, and 2 divisions.

For the transformation of a regularly distributed set of
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points, we can use an incremental scheme that determines
the position of a transformed point by adding a fixed in-
crement to the transformed position of a neighboring point
8, 11, 18. With the technique proposed in 7 we can thereby re-
duce the computation costs to 6 additions, 1 multiplication,
and 2 divisions per point.

By exploiting the hierarchical structure of our PBR it turns
out that we can compute projective 3D transforms of the
sample points by only using 4 additions, no multiplication
and 2 divisions per point. This comes for free with our oc-
tree traversal reconstruction algorithm.

Let M be a 3 × 4 transformation matrix that maps a
sample point pi in homogeneous coordinates (x,y,z,1) to
a vector p′

i = (u,v,w) = M pi. The final screen coordinates
(u/w, v/w) are obtained by de-homogenization. For each
frame, we can precompute the matrix M such that it com-
bines the modelview, perspective, and window-to-viewport
transformation 6. Let q be a fixed displacement vector in ho-
mogeneous coordinates (dx,dy,dz,0) then we obtain

M (pi +q) = M pi +M q.

Hence, when we know the image of pi under M, we can
find the image of pi + q by simply adding the precomputed
transformed displacement vector q′ := M q.

During octree traversal for reconstructing the sample
point positions, we recursively split cells from a voxel grid
Gi into octants on the next finer level Gi−1. Since a voxel cell
B from the grid Gi has an edge length 2i h, we can compute
the cell centers of its octants B1, . . . ,B8 by adding the scaled
displacement vectors

di, j = 2i−1 h









±1
±1
±1
0









, j = 1, . . . ,8

Let the indices jk, . . . , j1 ∈ {1, . . . ,8} describe an octree path
from the root to a leaf cell then we can compute its center by

p = c+
k

∑
i=1

di, ji

where c is the center of the root voxel Gk. Applying the
transformation M, we find that

M p = M c+
k

∑
i=1

M di, ji = c′ +
k

∑
i=1

d′
i, ji . (1)

If the number of transformed samples is large, we can pre-
compute c′ and the 8k transformed displacement vectors
d′

i, j = M di, j where we exploit the relation d′
i+1, j = 2d′

i, j .

At the first glance, this way to compute the transformed
point positions seems very complicated since one matrix
multiplication is rewritten as k vector additions. However,
just like for the analysis of the memory efficiency, we find
that sample points with a common prefix in their octree paths
also have a common partial sum in (1). Hence, whenever we

add a vector d′
i, j during the octree traversal, we can reuse

the result for all samples in the sub-tree below the current
node. With an average branching factor of 4 it follows that
the addition of d′

i, j on level Gi contributes to the position of

4i−1 sample points, i.e., 41−i additions per point. In total we
calculate

k

∑
i=1

41−i ≤ 4
3

vector additions per sample which amounts to 4 scalar ad-
ditions since the di, j are 3-dimensional vectors. Eventually,
we de-homogenize the screen coordinates for each sample
point which requires 2 more divisions.

The above analysis shows that the efficient storage of the
sample points by a hierarchical sequence of byte codes does
not only provide a compact file format. Since the octree
traversal is also the most efficient way to process the sam-
ples for display, we use it as in-core representation as well.
For every frame our software renderer traverses the tree and
sets the acoording pixels in a frame buffer in main memory.
Once the traversal is complete we send the frame buffer to
the graphics board. More details about our software renderer
will be explained in the following sections.

The octree traversal can be done in depth-first order or in
breadth-first order. Both variants have their particular advan-
tages. In the following we compare both variants but before
that we present additional techniques to accelerate the ren-
dering of PBR which apply to all variants.

4.1. Point attributes

In order to render shaded images we need additional at-
tributes stored with the samples pi. Basic lighting requires
at least a normal vector ni. Additional attributes like a base
material or MIP-mapped texture information are necessary
for more sophisticated renderings 18. To keep the memory re-
quirements for complex models in reasonable bounds, these
attributes are usually quantized. Normal vectors and color
attributes are then stored as indices to a global lookup table.

In our implementation we use a normal vector quanti-
zation scheme that is based on the face normals of a uni-
formly refined octahedron 3, 26. We start with eight triangular
faces T0,0, . . . ,T0,7 forming a regular octahedron inscribed
into the unit sphere. Then we recursively split every triangle
Ti, j into four subtriangles Ti+1,4 j, . . . ,Ti+1,4 j+3 by bi-secting
all edges and projecting the new vertices back to the unit
sphere. Due to the symmetry of the sphere, the center trian-
gle after splitting has the same normal as Ti, j . We assign the
indices such that this center triangle becomes Ti+1,4 j . After a
few refinement steps we obtain a set of uniformly distributed
face normals (cf. Fig. 6).

The hierarchical definition of the normal index lookup ta-
ble allows us to obtain quantizations with different precision.
The first three bits of the normal index determine the octant
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T

Ti+1,4j+1Ti,j

i+1,4j+3

i+1,4j+2T
i+1,4jT

Figure 6: Normal vectors are quantized based on a recur-
sively refined octahedron.

in which the normal vector lies and then every pair of bits se-
lects one of the four subtriangles on the next level. Since we
chose the indexing scheme such that Ti, j and Ti+1,4 j have the
same normal vector, we can easily switch to a lower quan-
tization level by simply masking out the least significant 2r
bits of a normal index to a 3+2l bit lookup table with l ≥ r.

In our experiments, 13 bit normal quantization (5th refine-
ment level of the octahedron) proved sufficient in all cases.
If even higher quality would be required, we could go to 15
or 17 bit. In applications where two-sided lighting is accept-
able, we can save one bit by ignoring normal orientation and
storing only one half of the refined octahedron. In this case,
we can use the 7th refinement level with an 16 bit index still
fitting into one short integer.

Besides saving memory, the quantization of point at-
tributes gives rise to efficient algorithms since many com-
putations can be ”factored out” such that we apply them
to the lookup table instead of the sample points 17. For ex-
ample if we place the light sources at infinity then the re-
sult of Phong lighting at the sample points only depends on
their normal vector. When using a 13 bit normal lookup ta-
ble, we can distinguish 8192 different normal directions. In
a PBR with hundreds of thousands or even millions of sam-
ple points, it is obvious that many samples will share the
same normal. Hence it is much more efficient to evaluate
the lighting model once per normal vector instead of evalu-
ating it once per sample point. In our software renderer we
therefore compute for every frame a new table with shaded
color values for every normal vector according to the cur-
rent transformation matrix. During sample point rendering
we then use the normal index to access this color lookup ta-
ble directly (cf. Fig. 7).

As mentioned above we can store many more sample
point attributes, like color and other material properties. For
each attribute we define a separate lookup table and com-
bine the corresponding values during sample point render-
ing, e.g., multiplication of the Phong shading color with the
base color. If the combination of the various attributes is non-
trivial, e.g., materials with different Phong exponent, we can
precompute an expanded lookup table with double index.

The attributes for each sample point can be stored sepa-
rately from the sequence of geometry byte codes or inter-
leaved with it. In any case we do not introduce any memory
overhead since the octree traversal generates the samples in
a well-defined order such that we only have to make sure

Figure 7: Per normal shading instead of per point shading.
We show a shaded sphere with 8192 faces under different
lighting conditions. The shading values are transferred to
the head model by normal matching. This technique works
for any lighting model which does not depend on the point
position.

that the encoder stores the sequence of attributes in the same
order.

4.2. Visibility

The homogeneous coordinate wi of the transformed sample
points (ui,vi,wi) = p′

i = M pi can be used to efficiently de-
termine visibility based on a z-buffer. In addition we can ex-
ploit the hierarchical structure of the octree to perform block
culling on coarser levels.

The most simple culling technique is view frustum
culling. Similar to 20 we can easily determine during octree
traversal if the set of samples in the subtree below the current
node will project outside the viewport. To do this, we need
a bounding box for the respective set of samples. In contrast
to 20 where bounding sphere radii have to be stored explic-
itly, we do not have to store any additional information in
the stream of byte codes since the dyadic sizes of the octree
cells trivially follow from the current octree level.

Backface culling is straightforward but if we want to do
it blockwise we have to store normal cone information as an
additional octree node attribute since we cannot derive reli-
able normal information implicitly from the octree structure.
Just like for the other attributes we associate an octree node
with the corresponding attributes based on the order in which
the traversal procedure enumerates them.

In cases where backface culling is not possible due to non-
oriented normal vectors, we can achieve a comparable ac-
celeration effect with a simple depth sorting technique. Let
V1, . . . ,V8 be the eight voxels of the grid Gk−1. Each of these
voxels is the root of a sub-tree covering one octant of the
bounding cube Gk. If we sort the Vi according to their cen-
ter’s z-coordinate, we can render them front to back. This
ordering increases the percentage of z-buffer culled sample
points since the probability of a later sample overwriting an
earlier one is lowered. In principle we could apply the same
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permutation Vi( j) to all the nodes in the octree and thus max-
imize the effectiveness of the z-buffer. However this is in-
compatible to our byte code sequence representation since
it requires to store the octree structure and the sample point
to attribute relation explicitly. Hence we restrict the depth
sorting to the coarsest level Gk−1 and store the PBR as a
collection of eight independent octrees.

More aggressive culling could be achieved by using a hi-
erarchical z-buffer 8 which enables efficient area occlusion
tests. Our current implementation does not use this sophisti-
cated culling technique since one of our system design goals
is simplicity.

4.3. Depth-first traversal

According to the last sections we can think of our PBR as
a combination of streams of symbols. The geometry stream
consists of the byte codes that control the octree traversal. In
addition we can have several attribute streams (maybe inter-
leaved with the geometry stream) where normal and/or color
indices are stored.

The depth-first traversal reconstruction procedure has al-
ready been sketched in Fig. 4. According to equation (1) we
can compute the pixel position very efficiently during traver-
sal.

decode(transformed center position p′, recursion level i)

if i = 0
read normal index n, material index c
set pixel(p′, shading(n,c))

else
read byte code [χ1 · · ·χ8]
for j = 1, . . . ,8

if (χ j) decode(p′ +d′
i, j ,i−1)

Notice that the attribute streams (normal and material)
are read only at the leaf nodes of the octree. If we include
one of the block culling techniques, we might have to ac-
cess another attribute stream (e.g., normal cone) for inner
vertices as well. Whenever we decide to prune a subtree we
have to overread all byte codes and attributes that belong to
this subtree. This can be implemented by a status flag (ac-
tive/passive). If the flag is set to passive the octree traversal
is continued but no coordinate or color computations are per-
formed. When the traversal tracks back to the current node
the flag is reset to active and normal rendering is continued.

All vectors in the above procedure have three coordinates
(2D + homogeneous). The vector additions can be done in
fixed point (= scaled integer) arithmetics because the inter-
mediate coordinate values are guaranteed to stay within a
fixed bounding box. Rounding errors are negligible since the
order of the additions implies that the length of the displace-
ment vectors decreases by a factor of 2 in every step.

The set pixel procedure performs a z-buffer test and as-
signs a color to the pixel at (p′[u]/p′[w],p′[v]/p′[w]). The
color is determined by the shading procedure which merely

does a color table lookup. Notice that our renderer is pure
software, i.e. we handle our own framebuffer which is sent
to the graphics board after the complete traversal.

To further optimize the performance, our C++ implemen-
tation uses a non-recursive formulation of the depth first
traversal. For this we have to maintain a simple stack data
structure. Its manipulation turned out to be more efficient
than the function call overhead in the recursion. Moreover,
by unrolling the loop over j we can avoid the index compu-
tations for the array access to d′

i, j .

4.4. Breadth-first traversal

Although the depth-first traversal guarantees minimal mem-
ory overhead and maximal rendering performance, the
breadth-first traversal has some advantages since it progres-
sively reconstructs the PBR. In fact, if we store the geometry
byte codes in breadth-first order then we can read any prefix
of the input stream and reconstruct the model on a lower re-
finement level. This property has many interesting applica-
tions such as progressive transmission over low-bandwidth
data connections or immediate popup of a rendering applica-
tion without having to load large datasets completely during
initialization 20, 21.

The handling of the attribute streams is a little bit more
tricky than in the depth-first case since the actual set of leaf
nodes depends on the portion of the geometry stream (#len)
that is processed. The easiest solution is to store an attribute
for every octree node (not only the leaves) and then over-
read the first #len attributes since the corresponding nodes
have already been expanded. Notice that due to the expected
branching factor of 4 the total data overhead for these addi-
tional attributes is only about 33%.

decode(transformed center position p′, input stream length len)

Q[0] = p′, tail = 1, level = k
for (head = 0 ; head < len ; head++)

read byte code [χ1 · · ·χ8]
if ([χ1 · · ·χ8] = [00000000])

level – –
else

for j = 1, . . . ,8
if (χ j) Q[tail++] = Q[head]+d′

level, j

skip #len normal and material indices
for (head = len ; head < tail ; head++)

read normal index n, material index c
set pixel(Q[head], shading(n,c))

In the above procedure we use a zero code in the geometry
stream to indicate switches between levels. This could also
be implemented by counting the full voxels on level Gi to
determine the number of byte codes that have to be read to
reconstruct Gi−1. However, we opted for the explicit level
switching solution to optimize the performance by avoiding
additional calculations during traversal.
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5. High quality rendering

A major difficulty in the generation of high quality images
with point based rendering techniques are sampling artifacts.
These artifacts become visible as holes in the surface be-
cause some of the screen pixels are not hit by any sample
point or they appear in the form of alias errors when several
sample points are mapped into the same pixel.

Most point sampling based rendering systems use splat-
ting techniques to achieve high quality renderings 18, 20, 29.
The basic idea is to replace the sample points by small tan-
gential disks whose radii are adapted to the local sampling
density and whose opacity can be constant or decays radi-
ally from the center. When such a disk is projected onto the
screen it becomes an elliptical splat. Its intensity distribu-
tion is called the footprint or kernel of the splat. If several
splats overlap the same pixel then the pixel color is set to
the intensity weighted average of the splat colors. Splatting
solves the problems of undersampling as well as oversam-
pling since the size and shape of the splat enables smooth
interpolation between the samples and the color averaging
guarantees correct screen space filtering for alias reduction.

In order to use surface splatting with our hierarchical PBR
we have to address two issues:

• The use of tangent disks for splatting is designed to fill
gaps between samples in tangential direction. The quan-
tization error for the sample positions in a PBR, how-
ever, can shift the points in an arbitrary direction. This can
lead to artifacts near the contour of an object (cf. Fig. 8).
Hence, to guarantee optimal image quality, we have to in-
crease the precision of the samples. We do this by adding
offset attributes which encode small correction vectors for
each point.

• Computing the optimal splat footprints is computationally
expensive. In order to keep up the high rendering perfor-
mance of our software renderer we have to shift the time
consuming steps to an offline pre-processing stage.

Figure 8: Tangential splats fill holes only in tangential di-
rection. Gaps remain where the quantization error is in nor-
mal direction to the surface. This effect was reported in 20 as
well. They work around it by prescribing a minimum aspect
ratio of the elliptical splats and thus trading the gap filling
for bad rendering quality near the contours.

5.1. Offset attributes

When we do uniform clustering, we place sample points at
the centers of the cells in our voxel grid. If the cell size is h
then the approximation error is bounded by

√

3/4h. We can

reduce this error by shifting the cell center p along its normal
vector n to p̄ = p+λhn. This scalar offset value |λ| ≤

√

3/4
is quantized and stored as an additional attribute of the point
p. In practice it turns out that a few bits, usually 2 or 3, are
sufficient to guarantee water tight surfaces (cf. Fig. 9). No-
tice that offset attributes are scalar values but they encode
displacement vectors such that k offset bits correspond to
3k coordinate bits. When generating a hierarchical PBR by
uniform sampling, the offset attributes can be found by inter-
secting a ray from the cell center p in normal direction with
the original surface.

Figure 9: In flat areas viewed from a grazing angle gaps can
appear because splatting fills holes only in tangential direc-
tion (center). Offset attributes remove these artifacts (right).
In this example we use 2 bit precision for the offsets. Notice
that we chose a very coarse PBR with only 198 K points (8
octree levels) to make the effect clearly visible in the center
image. Normally this effect is much more subtle, affecting
only a view scattered pixels.

The offset attribute can easily be integrated into the oc-
tree traversal procedure. When a leaf node is reached, we
correct the sample position before splatting. Notice that the
transformation of the normal vectors according to the cur-
rent viewing transform is done once per frame (for shading)
and not once per sample point.

decode(transformed center position p′, recursion level i)

if i = 0
read normal index n, material index c, offset index l
draw splat(p′ +λ[l] normal[n], shading(n,c))

else
read byte code [χ1 · · ·χ8]
for j = 1, . . . ,8

if (χ j) decode(p′ +d′
i, j ,i−1)

5.2. Quantized surface splatting

In the surface splatting framework 29 a radial Gaussian ker-
nel is assigned to each sample in object space. This kernel
defines an intensity distribution within the tangent plane of
the sample point. When the kernel is mapped to screen space,
the resulting splat footprint is another Gaussian kernel in the
image plane. The final image is obtained by applying a band
limiting filter to the splats, resampling their footprints at the
pixel locations, and averaging the contributions of overlap-
ping splats.

In order to accelerate this rendering algorithm we avoid
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to re-compute the splat footprints in every frame. Instead we
pre-compute the projected and filtered splat kernels. Obvi-
ously the number of pre-computed splats has to be bounded.
We obtain a reasonably sized lookup table for splat foot-
prints by quantizing the sample point position and the nor-
mal vector orientation. For simplicity we represent the foot-
prints as (2r +1)× (2r +1) pixel masks. By this simplifica-
tion we implicitly round the splat center to integer coordi-
nates in image space which might cause visual artifacts near
the contour of a surface. However, the effect is usually not
noticeable since it is covered by the low-pass behavior of the
splatting procedure.

For the normal vectors we use the same quantization as
described in Sec. 4.1. Again, due to the low-pass filter prop-
erty of the splatting procedure it turns out that we do not
need a high quantization resolution. Reducing the splat nor-
mal quantization leads to an inferior rendering quality near
the contours of an object but is hardly noticeable in front
facing surface regions. In our implementation we quantized
the splat normals to 8 bits (no orientation) which leads to
256/4 = 64 different splat shapes if we exploit symmetries
with respect to the coordinate axes. Notice that due to the
special indexing of the normal lookup table we can use the
same normal index for shading and splatting: to evaluate the
Phong model we use the full directional resolution (e.g., 13
bit) while for the selection of the splat footprint we mask out
the least significant bits.

If we keep the camera parameters (relative location of eye-
point and viewport) fixed, the quantization of sample posi-
tions can be done in screen space coordinates by splitting
the image plane into sectors and selecting the splat masks
accordingly. The quantization resolution in the image plane
should be such that the angular resolution matches the an-
gular resolution of the normal quantization. For the 8 bit
splat-normal quantization (three times refined half octahe-
dron) and a camera with viewing angle π

4 this means we
have to split the image plane into 4× 4 sectors. Again, we
can exploit symmetries with respect to the coordinate axes,
leading to 2×2 different configurations.

The last degree of freedom is the scaling of the splats
which depends on the distance of the sample point to the
image plane. For the depth quantization we typically use
d = 10 non-uniform z-intervals which we define according
to the projected size of the leaf voxels in our octree represen-
tation. Since our samples are distributed on a uniform grid
we set the splat radius in object space to the grid size h 27.
When projecting the sample point p = (x,y,z) onto the im-
age plane, this radius is scaled to h′ = h

z (where we assume
the standard projection with image plane z = 1 and the pro-
jection center at the origin). We choose the quantization of
the depth values according to the integer part of h′ since this
gives us the splat radius measured in pixels. Consequently
the interval bounds for the z-quantization are [ 1

2 h, 1
4 h, 1

6 h...]
and the corresponding splat masks are 1× 1, 3× 3, 5× 5,
. . .. When increasing the depth quantization d beyond 10 we
could not observe any visual differences in our experiments.

In total we compute 64×2×2×10 = 2560 splat masks.
The splat mask computation requires for each pixel the eval-
uation of the screen space EWA convolution integral 9, 29

where we chose a simple box-filter for the band-limiting pre-
filter. The total storage requirements for each pixel in a splat
mask is one byte. The complete splat mask lookup table re-
quires about 200 KByte. Since the table does not depend
on a particular model it is precomputed once and statically
linked to our software renderer. During rendering we use the
ε-z-buffer technique described in 8, 18 for proper splat accu-
mulation.

6. Results

We implemented the described hierarchical encoding and
decoding procedures. Our pure software renderer computes
and draws up to 14 million Phong shaded and textured sam-
ples per second and about 4 million anti-aliased splats on a
commodity PC with 1.5 GHz Athlon processor. In our exper-
iments we use a 512× 512 display. About 5% of the com-
putation time is spend with clearing the screen buffer and
sending it to the graphics board which implies that the per-
formance of our technique is not very sensitive to the screen
resolution if the number of pixels per splat remains constant.
Per frame computations such as the per-normal shading use
another 5% to 10% of the total time.

The memory space used by our PBR models is dominated
by the point attributes. The compressed byte codes for the
octree structure require only 1 to 1.5 bit per point. Adding 2
bit offset attributes typically increases the memory require-
ments to 2 to 3 bit per point (if necessary). Normal vectors
are quantized to 13 bit which leads, after compression, to ad-
ditional costs of 5 to 8 bit per point. The optional 8 bit color
attributes add another 2 to 6 bit. To obtain these compression
results we simply applied gzip 4 to the attribute streams.

In total we found that the resulting file sizes are some-
where between 5 and 10 bit per point without color and 8 to
13 bit with color. The in-core data structure is bigger since
we align the attribute values to bytes or words for efficiency
reasons. Hence, offset- (1 byte), normal- (2 bytes) and color-
attributes (1 byte) sum up to 4 bytes per point. Notice that,
according to Section 4, the hierarchical PBR based on the
byte code sequence is also used during rendering and no ex-
plicit octree data structure has to be built.

Fig. 10 shows the effect of anti-aliased point rendering
based on surface splatting with pre-computed splat masks.
We did not observe any significant visual artifacts emerging
from the quantization of the splat kernel shapes. Occasion-
ally small alias errors appear in flat surface areas seen from
a very grazing angle. These are due to the rounding of the
splat centers to integer coordinates in screen space.

Fig. 12 compares pure point rendering with surface splat-
ting. For coarse point sets the low-pass filtering behavior is
clearly visible. As the resolution increases, the image gets
progressively sharper. In Fig. 13 we exploit this behavior for
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Figure 10: Point rendering can cause alias errors in the
presence of highly detailed texture (left). Surface splatting
with pre-computed splat masks avoids this effect (right). The
bottom row shows a blow up of the respective frame buffers.

progressive transmission of the David head data set 14 by
traversing the octree representation in breadth first order.

Notice that we are not competing with state-of-the-art ge-
ometry compression schemes 13. Obviously, piecewise linear
or even higher order approximations always lead to a more
compact representation if the underlying surface is a smooth
manifold. The use of a hierarchical structure for point clouds
only allows the sender to transmit the data in the order of de-
creasing relevance (most significant bits first) but it does not
reduce the overall amount of data — similar to progressive
meshes 10.

Table 1 summarizes the memory requirements of our
PBR. The rendering performance for points and splats is
compared to the performance we obtained with a simple
OpenGL point renderer (GL_POINTS with VertexArrays)
on the same PC with a GeForce 3 graphics board or the Mesa
OpenGL software implementation.

We also compared our PBR to polygon rendering. We
used the St. Matthew model because it is particularly rich
in fine detail (chisel marks). For the 400 K PBR model our
software achieves 4.1 frames per second with anti-aliased
splatting. Without splatting we can render a refined model
with 1.6 M points at a slightly higher frame rate. A compa-
rable performance is obtained with a 400 K triangle model
using graphics hardware (GeForce 3) or with a 150 K tri-
angle model using software OpenGL (Mesa). Fig. 11 shows
a detail view of the corresponding models to compare their
visual quality.

7. Conclusion and future work

We presented a new hierarchical representation for point
sampled geometry with extremely low memory require-

ments and very high rendering performance. The image
quality is high due to effective anti-aliasing based on surface
splatting. We showed that the PBR optimally balances sam-
pling resolution and quantization precision and we derived
strict bounds for memory and computation complexity.

The reconstruction algorithm merely consists of an octree
traversal which is controlled by a sequence of byte codes.
Since the traversal can be implemented in a non-recursive
fashion and uses only basic data types, we expect that a hard-
ware implementation could boost the rendering performance
by another order of magnitude. Due to the good compression
rates, even complex PBR datasets would be small enough to
fit into the texture RAM on the graphics board.

Our current software implementation of the point ren-
derer is already much faster than existing point rendering
algorithms such as Qsplat 20 and surface splatting 29. We
could further optimize the rendering performance by using
the SIMD operators of the CPU (which we currently don’t).

Figure 11: Rendering quality obtained for the St. Matthew
model at a prescribed rate of approximately 5±1 frames per
second. The top left shows the pure point rendering with-
out splatting (1.6 M points) while the top right shows anti-
aliased splatting (400 K points). Bottom left shows a 400 K
triangle model rendered in hardware and bottom right shows
a 150 K triangle model rendered in software.
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